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Abstract. Characterizations of the containment of a convex set either in an arbitrary convex
set or in the complement of a finite union of convex sets (i.e., the set, described by reverse-
convex inequalities) are given. These characterizations provide ways of verifying the contain-
ments either by comparing their corresponding dual cones or by checking the consistency of
suitable associated systems. The convex sets considered in this paper are the solution sets of
an arbitrary number of convex inequalities, which can be either weak or strict inequalities.
Particular cases of dual characterizations of set containments have played key roles in solv-
ing large scale knowledge-based data classification problems where they are used to describe
the containments as inequality constraints in optimization problems. The idea of evenly con-
vex set (intersection of open half spaces), which was introduced by W. Fenchel in 1952, is
used to derive the dual conditions, characterizing the set containments.
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1. Introduction

Consider the sets

F :={x ∈R
n |ft(x)<0, ∀t ∈S; ft(x) � 0, ∀t ∈W } (1.1)

and

G={x ∈R
n |gi(x) � 0, ∀i ∈ I ; hj (x) � 0, ∀j ∈J },

where S ∩ W = ∅, S ∪ W �= ∅, I ∩ J = ∅, I ∪ J �= ∅, and all the functions,
{ft , t ∈S ∪W }, {gi, i ∈ I }, and

{
hj , j ∈J

}
, are convex functions from R

n to
R. The set containment problem that is studied in this paper, consists of
deciding whether F ⊂G or not. Dual characterizations of such set contain-
ments have played a key role in solving large scale knowledge-based data
classification problems where they are used to describe the containments as
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inequality constraints in optimization problems (see e.g., [2,8,10–12]). For
instance, the incorporation of prior knowledge in the form of a polyhedral
knowledge set in the construction of a linear classifier is modelled as the set
containment F ⊂G [2], where F is a given polyhedral convex set and G is
a given closed halfspace. The dual characterizations of the set containment
were obtained using the classical nonhomogeneous Farkas Lemma [9].

More recently, various extensions of the containment problem to more
general situations have been obtained in [8] and [12], by means of math-
ematical programming theory and conjugacy theory, respectively, where
S =∅ (i.e., without strict inequalities). In this paper we establish dual char-
acterizations by allowing the systems defining F and G to contain strict
inequalities, as depicted in Figure 1. Such kind of systems also arise nat-
urally in the characterization of the stable containment; i.e., establishing
conditions which guarantee that the inclusion is preserved under sufficiently
small perturbations of the systems representing F and G.

The main basic tool in our approach in deriving the dual characteriza-
tions is the association of two dual cones in R

n+1, say K and M, such that
F ⊂ G if and only if M ⊂ K. Since M ⊂ K can be interpreted as a dual
condition, the verification of the containment reduces to the effective cal-
culus of the corresponding dual cones. In the case where F is the inter-
section of a family of open convex sets, {x ∈ R

n | ft(x) < 0}, t ∈ S, with a
family of closed convex sets, {x ∈ R

n | ft(x) � 0}, t ∈ W , F turns out to
be an evenly convex set (i.e., the intersection of open halfspaces, see [1]),
represented by means of a convex inequality system. The dual cones of
closed convex sets were introduced in [3] in order to characterize large clas-
ses of closed convex sets from a geometric point of view. The dual cones

Figure 1. Containment of the evenly convex set F = {x | ft (x) < 0, ∀t ∈ S;ft (x) � 0, ∀t ∈ W } in
the polyhedral set G={x |ui(x) � αi, ∀i ∈ I, ui(x)<αi, ∀i ∈ J }, where ft : IRn → IR is a convex
function and ui ∈ IRn and αi ∈ IR.
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of evenly convex sets that are introduced for the first time in the present
paper, play a central role in describing the dual conditions.

The paper is organized as follows. Section 2 contains the necessary notation
and some basic results on convex as well as evenly convex sets to be used later.
Section 3 develops calculus rules for the dual cone of a closed convex set. Sec-
tion 4 considers stable containment of closed convex sets. Section 5 defines dual
cones for evenly convex sets and develops calculus rules which are similar to
those obtained in Section 3. These cones provide dual characterizations of con-
tainment for convex sets which are represented by means of strict constraints.
Finally, Section 6 presents general existence theorems for several classes of con-
vex systems which contain strict inequalities.

2. Preliminaries: Evenly Convex Sets

All the vectors in R
n will be interpreted as column vectors. The inner prod-

uct of two vectors u and x will be denoted by either u′x or u(x), and the
Euclidean distance between u and x will be denoted by d(u, x)=‖u− x‖.
Given a set X⊆R

n, we shall denote by int X,bd X, cl X, coX, and conecoX

the interior, the boundary, the closure, the convex hull and the convex cone
generated by X respectively. By R+ and R++ we denote the sets of nonneg-
ative and positive real numbers, respectively, so that R+X :={�x | � � 0, x ∈
X} and R++X :={�x |�>0, x ∈X} are cones in R

n, with the null vector 0n ∈
R+X. The smallest convex cone containing X ∪{0n} is conecoX =R+ coX.

Fenchel [1] defined the class of evenly convex sets as the intersections of
open halfspaces. The set C is evenly convex if and only if for all x /∈ C

there exists a hyperplane H such that x ∈H and H ∩C =∅. The evenly con-
vex hull of X [1], denoted by ecoX, is the smallest evenly convex set which
contains X (i.e., it is the intersection of all the open halfspaces which con-
tain X). It is known that ecoX is obtained by eliminating from clcoX those
exposed faces which do not contain points of X (Proposition 2.1 in [4]).
From the definition, given x̄ ∈R

n, x̄ �∈ecoX if and only if there exists z∈R
n

such that z′(x − x̄)<0 for all x ∈X.
The following existence theorem for linear inequality systems containing

strict inequalities will be used later.

PROPOSITION 2.1 (Theorem 3.1 [4]). Let S be nonempty. The system
{a′

t x <bt , t ∈S; a′
t x � bt , t ∈W } is consistent if and only if

0n+1 �∈ eco
[{(

at

bt

)
, t ∈S

}
+R+

{(
at

bt

)
, t ∈W

}
;
(

0n

1

)]
.

The support function of X is σX(u) = supx∈X u(x) and the indicator
function of X is defined by
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δX(x)=
{

0, x ∈X,

+∞, x �∈X.

Given a proper convex function f : Rn →R ∪{+∞}, the conjugate function
of f is f ∗: Rn →R∪{+∞} defined by

f ∗(u)= sup
x∈dom f

{u(x)−f (x)},

where dom f :={x ∈R
n |f (x)<+∞} is the domain of f . The epigraph of f

is defined by

epi f =
{(

x

γ

)
∈R

n+1 |f (x) � γ, x ∈dom f

}
.

Many dual conditions are formulated in terms of epi f ∗
t , where ft defines a

constraint. So, it is important to note that epif ∗
t can be expressed in terms

of ft by exploiting the information at an arbitrary point x̄ ∈dom ft . In fact,
according to Proposition 2.1 in [8],

epi f ∗
t =

⋃

ε∈R+

{(
v

ε +v′x̄ −ft(x̄)

)
| v ∈ ∂εft (x̄)

}
, (2.1)

where ∂εft (x̄) is the ε-subdifferential of ft at x̄, i.e.,

∂εft (x̄)={v ∈R
n |ft(x) � ft(x̄)+v′(x − x̄)− ε, ∀x ∈dom ft

}
.

Recall that the subdifferential of ft at x̄ is ∂ft (x̄)=⋂ε �0 ∂εft (x̄).

The following result is fundamental for the characterization of contain-
ments of closed convex sets.

PROPOSITION 2.2 (Lemma 3.1 [8]). Let f : Rn → R ∪ {+∞} be a proper
convex lower semicontinuous (lsc) function, and let F = {x ∈ R

n | f (x) � 0}.
Then the following statements hold:

(i) F �=∅ if and only if
( 0n

−1

) �∈ cl(R+ epi f ∗).
(ii) If F �=∅, then epi σF = cl(R+ epi f ∗).

3. Containments of Closed Convex Sets

Consider the sets

F ={x ∈R
n |ft(x) � 0, ∀t ∈W }, (3.1)
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and
G={x ∈R

n |gi(x) � 0, ∀i ∈ I ; hj (x) � 0, ∀j ∈J },
where W �= ∅, I ∩ J = ∅, I ∪ J �= ∅, and all the functions, {ft , t ∈W },
{gi, i ∈ I }, and

{
hj , j ∈J

}
, are convex functions from R

n to R.
Mangasarian [12] presented dual characterizations of the set containment

F ⊂G in the following cases:
Case 1. |W |<∞, |I |<∞, J =∅, and all the involved functions are affine

(i.e., F and G are given polyhedral convex sets).
Case 2. |W | < ∞, I = ∅, |J | < ∞, {ft , t ∈ W } are affine functions and

{hj , j ∈J } are quadratic convex functions (i.e., F is a polyhedral convex set
and G is a reverse-convex quadratic set).

Case 3. |W | < ∞, I = ∅, |J | < ∞, and {ft , t ∈ W } and {hj , j ∈ J } are
differentiable convex functions (so that F is a closed convex set and G is a
closed reverse-convex set, both sets defined by means of ordinary systems).

The recent paper [8] established dual characterizations of the contain-
ment problem in the following cases:

Case 4. W is arbitrary, |I | < ∞, J = ∅, {ft , t ∈ W } are convex (affine)
functions, and {gi, i ∈ I } are affine functions (i.e., F is the solution set of a
convex (linear) semi-infinite system and G is a polyhedral convex set).

Case 5. W is arbitrary, I = ∅, |J | < ∞, and {ft , t ∈ W } and {hj , j ∈ J }
are convex functions (i.e., F is as in Case 4 and G is a reverse-convex set
described by means of reverse convex inequalities).

We assume that G is represented in a similar way when J =∅. In relation
to the reverse-convex set G in Case 5, let us observe that we can express

G={x ∈R
n |hj (x) � 0, ∀j ∈J }=R

n\
⋃

j∈J

Gj ,

where Gj :={x ∈R
n |hj (x)< 0} for all j ∈ J . Obviously, F ⊂G if and only

if F ∩ Gj = ∅ for all j ∈ J , so that the basic problem is to determine the
existence of solution of a system similar to (1.1):

{ft(x) � 0, t ∈W ; ft(x)<0, t ∈S; hj (x)<0}.

Consequently, existence theorems for convex systems possibly containing
strict inequalities play a double role in our approach. In fact, they pro-
vide tests for (1.1) to be consistent (otherwise the containment problem
is trivial) and they provide dual characterizations of F ⊂ G when G is a
reverse- convex set.

We begin by developing calculus rules for the dual cone of a closed con-
vex set, revisiting Case 4 as an immediate application. We define the weak
dual cone of the nonempty closed convex set F ⊂R

n as
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K � :=
{(

a

b

)
∈R

n+1 |a′x � b, ∀x ∈F

}
= epi σF . (3.2)

Obviously, coneco{( 0n

1

)}⊂K � and the equality holds if and only if F =R
n.

It is known that F is bounded if and only if
(

0n

1

)∈ int K � (see, e.g., The-
orem 9.3 in [5]). The standard hyperplane separation arguments yield

F =
{
x ∈R

n |a′x � b, ∀
(

a

b

)
∈K �

}
. (3.3)

Observe the symmetry of (3.2) and (3.3): the index set of the linear system
in one of the formulae is the solution set in the other one, and vice versa.
Consequently, if G �= ∅ is another closed convex set with associated weak
dual cone M � , we have

F ⊂G⇔M � ⊂K � (3.4)

i.e., the containment of closed convex sets is actually reduced to checking
the consistency of the given representation of F and, if F �=∅, the calcu-
lus of the respective weak dual cones. Then the dual characterization of the
containment is the right hand side inclusion in (3.4).

For Case 4, the following existence theorem allows to check the nonemp-
tyness of F . Such result can be seen as a convex counterpart of the exis-
tence theorem of Zhu [14] for linear systems in infinite dimensional spaces
(see Lemma 4.1 in [5] for a semi-infinite version).

PROPOSITION 3.1. Let F = {x ∈ R
n | ft(x) � 0, ∀t ∈ W }, where ft : Rn →

R∪{+∞} is proper, convex and lsc for all t ∈T . Then F �=∅ if and only if

(
0n

−1

)
�∈ cl coneco

[
⋃

t∈W

epi f ∗
t

]

. (3.5)

Proof. For each t ∈W , we consider the function ht :=γtft , where

γt :=
{

1, ft (0n) � 0,

ft (0n)
−1, ft (0n)>0.

Since the function h := supt∈W ht is proper, convex and lsc, according to
Theorem 2.4.4 in [7], we have

cl(R+ epi h∗)= cl coneco

[
⋃

t∈W

epi h∗
t

]

= cl coneco

[
⋃

t∈W

epi f ∗
t

]

,
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with F ={x ∈R
n |h(x) � 0}. The conclusion follows from Proposition 2.2(i).

The nonhomogeneous Farkas Lemma for linear semi-infinite systems
(Corollary 3.1.2 in [5], Corollary 3.3 in [8]) establishes that, if F ={x ∈R

n |
a′

t x � bt , ∀t ∈W }, then

K � = cl coneco
{(

at

bt

)
, t ∈W ;

(
0n

1

)}
. (3.6)

PROPOSITION 3.2. Let F =⋂i∈I Fi �= ∅, where Fi is a closed convex set
with weak duality cone K

�
i , i ∈ I . Then

K � = cl co

[
⋃

i∈I

K
�
i

]

.

Proof. Since Fi =
{
x ∈R

n |a′x � b, ∀ ( a
b )∈K

�
i

}
for all i ∈ I,

F =
{

x ∈R
n |a′x � b, ∀

(
a

b

)
∈
⋃

i∈I

K
�
i

}

.

Then, by the nonhomogeneous Farkas Lemma and since
(

0n

1

)∈K
�
i for all

i ∈ I , we have

K � = cl coneco

[(
⋃

i∈I

K
�
i

)

∪
{(

0n

1

)}]

= cl co

[
⋃

i∈I

K
�
i

]

. �

PROPOSITION 3.3. If F = {x ∈ R
n | ft(x) � 0, ∀t ∈ W } �= ∅ and ft : Rn →

R ∪ {+∞} is proper, convex and lsc for each t ∈ W , then the weak duality
cone of F is

K � = cl coneco

[
⋃

t∈T

epif ∗
t

]

.

Proof. F =⋂t∈W Ft �=∅, with Ft :={x ∈R
n |ft(x) � 0} for all t ∈W . Then,

by Propositions 3.2 and 2.2(ii),

K � = cl co

[
⋃

t∈W

K
�
t

]

= cl co

[
⋃

t∈W

cl(R+ epi f ∗
t )

]

= cl co

[
⋃

t∈W

(R+ epi f ∗
t )

]

= cl coneco

[
⋃

t∈W

epi f ∗
t

]

. �
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Observe that K � is the same cone which yields the consistency test (3.5).
Theorem 2.4.4 in [7] provides an alternative proof of Proposition 3.3 (see
Theorem 3.2 in [8]).

4. Stable Set Containments

In this section we see how the inclusion F ⊂G, where F and G are repre-
sented by means of linear inequality systems, is preserved under sufficiently
small perturbations of the data. To formulate the problem, let F and G be
the solution sets of the systems

ξ ={a′
t x � bt , t ∈W } (4.1)

and

η={c′
ix � di, i ∈ I }. (4.2)

We say that the containment F ⊂G is stable if it holds under arbitrary per-
turbations of the coefficients of ξ and η, provided that these perturbations
are sufficiently small. In order to define the size of a perturbation, consider
the set, 	ξ , of all linear systems with the same number of unknowns and
constraints as ξ . So the elements of 	ξ are of the form

ξ1 ={(a1
t )

′x � b1
t , t ∈W },

with a1:W →R
n and b1:W →R. The size of the perturbation which yields

ξ1 from the nominal system ξ is defined as

ρ(ξ1, ξ) := sup
t∈W

∥∥∥∥

(
a1

t

b1
t

)
−
(

at

bt

)∥∥∥∥
∞

.

It is easy to see that ρ defines a pseudometric on 	ξ (observe that it is pos-
sible that ρ(ξ1, ξ)=+∞). Similarly, the nominal system defining G,η, pro-
vides perturbed systems in a space of parameters, 	η, and the size of the
perturbation is also measured by means of the pseudometric of the uniform
convergence. We denote by F1 and G1 the solution sets of ξ1 and η1.

Precisely, the containment F ⊂ G is stable, if there exists a scalar δ > 0
such that F1 ⊂G1 if ρ(ξ1, ξ)<δ and ρ(η1, η)<δ.

We shall prove that the stable containment is basically the containment
of a closed convex set in an open convex set, a particular case of contain-
ment of evenly convex sets.

Recall that η satisfies the strongly Slater (SS) condition if there exists x̄ ∈
R

n and ε > 0 such that c′
i x̄ � di − ε for all i ∈ I, i.e., if the system {c′

ix +
xn+1 � di, i ∈ I ;−xn+1 <0}, is consistent, i.e. (by Proposition 2.1)
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0n+2 �∈ eco

⎡

⎣

⎛

⎝
0n

−1
0

⎞

⎠+R+

⎧
⎨

⎩

⎛

⎝
ci

1
di

⎞

⎠ , i ∈ I

⎫
⎬

⎭
;
(

0n+1

1

)⎤

⎦ .

PROPOSITION 4.1. Let F �=∅ and G be the solution sets of the linear sys-
tem (4.1) and (4.2), respectively. Then the following statements hold:

(i) If F ⊂ int G, G is compact and η satisfies the SS condition, then F ⊂G

is stable.
(ii) If F ⊂ G is stable and either {at , t ∈T } or {ci, i ∈ I } is bounded (e.g.,

one of the two systems is ordinary), then F ⊂ int G.

Proof. (i) Assume that F ⊂ int G, G is compact and η satisfies the SS
condition.

Let ε := d(F,bd G)> 0 (F is compact), U :={x ∈R
n | d(x,F )<ε/2}, and

V :=R
n\ cl U . Obviously, U and V are disjoint open sets such that F ⊂U

and bd G⊂V , respectively.
Since F is bounded, the feasible set mapping associating to each ξ1 ∈	ξ its

corresponding solution set mapping F1 is Berge upper semicontinuous (Corol-
lary 6.2.1 in [5]). Hence, there exists δ0 >0 such that F1 ⊂U if ρ(ξ1, ξ)<δ0.

The assumptions on G and η entail two consequences:

(a) There exists δ1 > 0 such that G1 ∩ U �= ∅ if ρ(η1, η) < δ1 (the SS
condition of η is equivalent to the Berge lower semicontinuity of the
feasible set mapping associating to each η1 ∈	η its solution set G1, see
e.g. Theorem 6.1 in [5]).

(b) There exists δ2 > 0 such that bd G1 ⊂ V if ρ(η1, η) < δ2 (since G is a
convex body and η satisfies the SS condition, the set valued mapping
associating to each η1 ∈	η the boundary of its solution set, bd G1, is
Berge upper semicontinuous, according to Corollary 5.3 in [6]).

Let δ=min{δ0, δ1, δ2}>0 and let ξ1 ∈	ξ and η1 ∈	η such that ρ(ξ1, ξ)<δ

and ρ(η1, η)<δ.
If U �⊂ G1, we take x1 ∈ U\G1 and x2 ∈ U ∩ G1 (from (a)), and [x1, x2]

must contain a point x3 ∈ [x1, x2] ⊂U such that x3 ∈ bd G1. Then x3 ∈U ∩
(bd G1)⊂U ∩V , by (b), contradicting U ∩V =∅.

Therefore we have F1 ⊂U ⊂G1.

(ii) Now we assume that F ⊂G but F �⊂ int G. Let x̄ ∈F\(int G).

We shall prove that the inclusion F ⊂G is unstable provided that one of
the two sets of left-hand-side vectors is bounded.

First we assume that {at , t ∈T } is bounded.
Since int G is evenly convex and x̄ /∈ int G, there exists z ∈ R

n such that
z′ (x − x̄)<0 for all x ∈ int G. Thus,
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z′(x − x̄) � 0 for all x ∈G. (4.3)

Given γ>0, we consider the system ξγ ={at
′x �bt +γ at

′z, t ∈W }∈	ξ . Since
the feasible set of ξγ is Fγ =F +γ z, we have x̄ +γ z∈Fγ . On the other hand,

z′ [(x̄ +γ z)− x̄]=γ ‖z‖2 >0,

so that x̄ +γ z /∈G according to (4.3). Hence Fγ �⊂G, with

lim
γ↘0

ρ(ξγ , ξ)= lim
γ↘0

γ ‖z‖ sup
t∈W

‖at‖=0.

Now we assume that {ci, i ∈ I } is bounded.
By the separation theorem (if x̄ /∈G) and the supporting hyperplane the-

orem (if x̄ ∈bd G), there exists z∈R
n, z �=0n, such that

z′(x − x̄) � 0 for all x ∈G. (4.4)

Given γ > 0, we consider the system ηγ ={c′
ix � di − γ c′

iz, i ∈ I }. Now we
have Gγ = G − γ z. If x̄ ∈ Gγ , then x̄ + γ z ∈ G and (4.4) entails the following
contradiction:

0 � z′ [(x̄ +γ z)− x̄]=γ ‖z‖2 >0.

Since x̄ ∈F\Gγ , we have F �⊂Gγ , with

lim
γ↘0

ρ(ηγ , η)= lim
γ↘0

γ ‖z‖ sup
i∈I

‖ci‖=0.

This completes the proof. ��
In particular, if η is a minimal representation of a full dimensional

polytope G, then

F ⊂G is stable⇔F ⊂ int G,

and the characterization of stable containment between closed convex sets
is equivalent to the characterization of the containment of a closed con-
vex set in an open convex set (the kind of problem we shall consider in
the next section). This statement is not necessarily true for polyhedral sets
(consider n=2, G={x ∈R

2 |x2 � 0} and F ={x ∈R
2 |x2 � −1}).

5. The Containments of Evenly Convex Sets

We define the strict dual cone of a nonempty evenly convex set F ⊂R
n as

K< :=
{(

a

b

)
∈R

n+1 |a′x <b, ∀x ∈F

}
. (5.1)
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Obviously, {0n} × R++ ⊂ K< and the equality holds if and only if F = R
n.

Since 0n+1 /∈K<, K< cannot be closed. In particular, if F is closed, we have
K< strictly contained in K � as far as 0n+1 ∈K � \K< (the supporting half-
spaces for F also define elements of K � \K<, if F �=R

n).
The symmetric expression of (5.1) is now a straightforward consequence

of the characterization of the evenly convex sets by means of the strong
separation property from external points:

F =
{
x ∈R

n |a′x <b, ∀
(

a

b

)
∈K<

}
. (5.2)

As for closed convex sets, if M< denotes the strict dual cone of a second
evenly convex set G,

F ⊂G⇔M< ⊂K<. (5.3)

(5.3) reduces again the containment problem with evenly convex sets to checking
the consistency of the given representations of F and G (by means of Proposi-
tion 2.1 if the given representation is linear and by means of the existence theo-
rems in Section 6 otherwise) and, if F �=∅ �=G, the comparison of the respective
strict dual cones. Their calculus is the main objective of this section. In particular
cases K< can be calculated through the weak dual cone of clF, K̄ � . Obviously,
K̄ � is a closed convex cone and K̄ � =K � if F is closed.

From now on in this section we assume that F is a nonempty evenly
convex set with associated strict dual cone K<. It follows from the defini-
tions that cl K< = K̄ � .

Thus the relative interiors of K̄ � and K< coincide and K< = int K̄ � if
K< is open.

Observe also that K< provides useful information on F , for instance, the
recession cone of F is

0+F =
{
y ∈R

n |a′y � 0, ∀
(

a

b

)
∈K<

}

(from (5.2)), and F is bounded if and only if
(

0n

1

)∈ int K<.

EXAMPLE 5.1. If F =R
2
+, then K̄ � =K � =R

2
− ×R+, where R− :=−R+,

and K< = R
2
− × R++. Observe that K< is neither closed nor open, with

cl K< = K̄ � .

The next three results show the existence of a topological duality
between the evenly convex sets and their respective strict dual cones. These
relationships will allow us to calculate K< from K̄ � when F is either open
or compact.
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PROPOSITION 5.1. The cone K< ∪{0n+1} is closed if and only if the set F

is open. In such a case, K< = K̄ � \{0n+1}.
Proof. Assume that F is not open. Let x̄ ∈ (bd F)∩F and let a �=0n and

b ∈ R such that a′x � b for all x ∈ F and a′x̄ = b (a′x = b is a supporting
hyperplane for F at x̄). Then, clearly, ( a

b ) ∈ cl(K< ∪ {0n+1}). On the other
hand, a′x̄ = b, with x̄ ∈F , entails ( a

b ) /∈K<. Since a �= 0n, ( a
b ) /∈K< ∪{0n+1}

and we conclude that this set is not closed.
Now we assume that K< ∪{0n+1} is not closed. Let
{(

ar

br

)}
⊂K< ∪{0n+1}

such that

lim
r

(
ar

br

)
=
(

a

b

)
/∈K< ∪{0n+1}.

Let x̄ ∈F such that a′x̄ � b. Since a′
r x̄ <br for all r ∈N, we have, for r →

∞, a′x̄ � b, i.e., a′x̄ = b. We shall prove that x̄ ∈ (bd F) ∩ F , so that F

cannot be open.
We have a �= 0n (otherwise ( a

b ) = 0n+1 ∈ K< ∪ {0n+1}), and a′x = b defines
a hyperplane containing x̄. Since

( ar

br

) ∈ K< ∪ {0n+1} for all r ∈ N, either
we have a′

rx = br for all x ∈ F (if
( ar

br

)= 0n+1) or a′
rx < br for all x ∈ F ,

otherwise. Taking limits, a′x � b for all x ∈F and so a′x =b is a supporting
hyperplane for F at x̄. Hence x̄ ∈ (bd F)∩F .

If K< ∪ {0n+1} is closed, then K< ∪ {0n+1} = K̄ � and, since 0n+1 /∈ K<,
K< = K̄ � \{0n+1}. �

From Proposition 5.1 we get a particular version of Farkas Lemma for
linear strict inequalities.

COROLLARY 5.1. If |S| < ∞, a′x < b is a consequence of the consistent
system {a′

t x <bt , t ∈S} if and only if
(

a

b

)
∈
[

coneco
{(

at

bt

)
, t ∈S;

(
0
1

)}]
\{0n+1}.

Proof. The assumptions guarantee that F :={x ∈R
n |a′

t x <bt , t ∈S} is an
open subset of R

n. The weak dual cone of cl F is, by the nonhomegeneous
Farkas Lemma, the polyhedral convex cone

K̄ � = coneco
{(

at

bt

)
, t ∈S;

(
0n

1

)}

and the conclusion follows from Proposition 5.1. �
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PROPOSITION 5.2. If the cone K< is relatively open, then the set F is
closed.

Proof. Assume that F is not closed. Let {xr}⊂F such that limr xr = x̄ �∈
F . Since F is an evenly convex set, there exists a �=0n and b∈R such that
a′x <b for all x ∈F and a′x̄ =b. Obviously, ( a

b )∈K<.
Take an arbitrary small ε > 0. Since limr a′xr = a′x̄ = b > b − ε,

there exists m ∈ N such that a′xm > b − ε, with xm ∈ F . Then
(

a
b−ε

)
/∈

K<,with
∥∥( a

b−ε

)− ( a
b )
∥∥= ε and

(
a

b−ε

)= ( a
b ) − ε

(
0n

1

) ∈ aff K<. Hence ( a
b )

does not belong to the relative interior of K<. �

Example 5.1 shows that the converse of Proposition 5.2 is not true. Next
we show that the compactness of F guarantees the openness (not only
relative) of K<.

PROPOSITION 5.3. If F is compact, then K< is open. In such a case,
K< = int K̄ � .

Proof. Assume that F is compact. Then its support function σF is con-
tinuous on R

n.
Let ( a

b ) ∈ K<. Since σF (a) = maxx∈F a′x < b, there exists ε > 0 such that
σF (a)<b− ε. Let δ >0 such that δ <(ε/2) and

|σF (c)−σF (a)|< ε

2
if ‖c−a‖<δ.

We shall prove that K< contains the open ball, in R
n+1, centered at ( a

b )

with radius δ. In fact, if
∥∥( c

d )− ( a
b )
∥∥<δ, then

σF (c)<σF (a)+ ε

2
<b− ε

2
<d.

Thus maxx∈F c′x <d, i.e., ( c
d )∈K<. �

Proposition 5.3 yields another version of Farkas Lemma for linear strict
inequalities.

COROLLARY 5.2. If the solution set of {a′
t x < bt , t ∈ S} is compact, then

a′x <b is a consequence of that system if and only if
(

a

b

)
∈ int coneco

{(
at

bt

)
, t ∈S;

(
0n

1

)}
.

Proof. Since F :={x ∈R
n |a′

t x <bt , ∀t ∈S} is compact, by Proposition 5.3,

K< = intclconeco
{(

at

bt

)
, t ∈S;

(
0n

1

)}
= intconeco

{(
at

bt

)
, t ∈S;

(
0n

1

)}
. �
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EXAMPLE 5.2. It is easy to see that the unit closed disk F := {x ∈ R
2 |

‖x‖ � 1} is the solution set of the system of strict inequalities

{(cos t)x1 + (sin t)x2 <s, (t, s)∈ [0,2π ]×]1,+∞[}.

Since F ={x ∈R
2 | (cos t)x1 + (sin t)x2 � 1, t ∈ [0,2π ]}, we have

K̄ � = coneco

⎧
⎨

⎩

⎛

⎝
cos t

sin t

1

⎞

⎠ , t ∈ [0,2π ];
(

02

1

)
⎫
⎬

⎭

={x ∈R
3 |x2

1 +x2
2 � 1, x3 � 0}.

Thus,

K< = int K̄ � ={x ∈R
3 |x2

1 +x2
2 <1, x3 >0}.

The next result can be interpreted as the general Farkas Lemma for
systems of strict inequalities.

PROPOSITION 5.4. If F ={x ∈R
n |a′

t x <bt , ∀t ∈S}, then

K< = eco R++

{(
at

bt

)
, t ∈S;

(
0n

1

)}
.

Proof. We have to prove that K< = ecoX, where X is the cone

X :=R++

{(
at

bt

)
, t ∈S;

(
0n

1

)}
.

Assume that ( a
b ) /∈ ecoX. Then either ( a

b ) /∈ cl coX or ( a
b ) belongs to a

certain exposed face of cl co X, which does not contain points of X, other-
wise. In both cases, there exists a hyperplane containing ( a

b ) and 0n+1 which
does not contain points of X.

Let ( c
d ) �=0n+1 such that

(
c

d

)′(
a

b

)
=0 and

(
c

d

)′(
v

w

)
<0 for all

(
v

w

)
∈X. (5.4)

From (5.4), since
(

0n

1

) ∈ X, we get d < 0. Let x̄ := |d|−1c. Multiplying by
|d|−1 each expression of (5.4), we obtain a′x̄ = b and

(
x̄

−1

)′
( v

w ) < 0 for all
( v

w ) ∈ X. In particular, since
( at

bt

)∈ X if t ∈ S, we get a′
t x̄ < bt for all t ∈ S.

Therefore x̄ ∈F and a′x̄ =b, and this entails ( a
b ) /∈K<.

Now we assume ( a
b )∈ ecoX. Since
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ecoX ⊂ cl coX ⊂ cl coneco
{(

at

bt

)
, t ∈S;

(
0n

1

)}
= K̄ � ,

we have a′x � b for all x ∈F . We claim that ( a
b )∈K<. Indeed, if there exists

x̄ ∈F such that a′x̄ =b then
(

x̄

−1

)′ [
λ

(
at

bt

)]
=λ(a′

t x̄ −bt )<0, ∀λ>0, ∀t ∈S, (5.5)

and
(

x̄

−1

)′ [
λ

(
0n

1

)]
=−λ<0, ∀λ>0. (5.6)

It follows from (5.5) and (5.6) that
(

x̄
−1

)′
( v

w )<0 for all ( v
w )∈X and hence,

(
x̄

−1

)′ [(
v

w

)
−
(

a

b

)]
<0 for all

(
v

w

)
∈X (5.7)

as
(

x̄
−1

)′
( a

b )=0. Recalling the last characterization of ecoX in the prelimi-
naries, (5.7) entails ( a

b ) /∈ ecoX. This contradiction proves that ( a
b )∈K<. �

Observe that {a′
t x <bt , t ∈S} is consistent if and only if

{(λat )
′x <λbt , (λ, t)∈R++ ×S; (µ0n)

′x <µ, µ∈R++}

is consistent if and only if (by Proposition 2.1)

0n+1 /∈ eco
[
R++

{(
at

bt

)
, t ∈S;

(
0n

1

)}
;
(

0n

1

)]

= eco R++

{(
at

bt

)
, t ∈S;

(
0n

1

)}
.

Thus K< (defined as in Proposition 5.4) characterizes the consistency of
{a′

t x < bt , t ∈ S} by 0n+1 /∈ K<, in the same way as
( 0n

−1

)
/∈ K � (defined in

(3.6)) characterizes the consistency of {a′
t x � bt , t ∈W }.

The next result is the counterpart of Proposition 3.2 for strict dual cones.

PROPOSITION 5.5. Let F =⋂i∈I Fi �=∅, where Fi is an evenly convex set
with strict dual cone K<

i , i ∈ I . Then

K< = eco

[
⋃

i∈I

K<
i

]

.
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Proof. By (5.2), Fi =
{
x ∈R

n |a′x <b, ∀ ( a
b )∈K<

i

}
for all i ∈ I . Then

F =
{

x ∈R
n |a′x <b, ∀

(
a

b

)
∈
⋃

i∈I

K<
i

}

and, recalling Proposition 5.4 and that
(

0n

1

)∈K<
i for all i ∈ I , we have

K< = eco R++

[
⋃

i∈I

K<
i

]

= eco

[
⋃

i∈I

K<
i

]

. �

Now we can calculate the strict dual cone of certain evenly convex sets.

COROLLARY 5.3. Let F ={x ∈R
n |ft(x)<0, ∀t ∈S} �=∅, with ft : Rn →R

convex for all t ∈S. Then the strict dual cone of F is

K< = eco

[{
⋃

t∈S

cl(R+ epi f ∗
t )

}∖
{0n+1}

]

.

In the particular case of ft(x)=a′
t x −bt for all t ∈S (i.e., F is the solution

set of a system of linear strict inequalities), it holds

K< = eco
[(

coneco
{(

at

bt

)
, t ∈S;

(
0n

1

)})∖
{0n+1}

]
.

Proof. Given t ∈ S, we denote Ft :={x ∈ R
n | ft(x)< 0}, which is a non-

empty open convex set. The weak dual cone of

cl Ft ={x ∈R
n |ft(x) � 0}

is, according to Proposition 2.2,

K̄
�
t = cl(R+ epi f ∗

t ).

Then, recalling Proposition 5.1, the strict dual cone of Ft is

K<
t = [cl(R+ epi f ∗

t )]\{0n+1}

and, by Proposition 5.5, we have

K< = eco

[{
⋃

t∈S

cl(R+ epi f ∗
t )

}∖
{0n+1}

]

.
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If ft(x)=a′
t x −bt , then f ∗

t =bt + δ{at } and

cl(R+ epi f ∗
t )= coneco

{(
at

bt

)
,

(
0n

1

)}
,

so that

K<= eco

[(
⋃

t∈S

coneco
{(

at

bt

)
,

(
0n

1

)})∖
{0n+1}

]

= eco
[(

coneco
{(

at

bt

)
, t ∈S;

(
0n

1

)})∖
{0n+1}

]
. �

EXAMPLE 5.1 (revisited). F ={x ∈R
2 |−x1 <λ, ∀λ∈R++;−x2 <µ, ∀µ∈

R++}. Since

coneco

⎧
⎨

⎩

⎛

⎝
−1
0
λ

⎞

⎠ , λ>0;
⎛

⎝
0

−1
µ

⎞

⎠ , µ>0;
⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭

∖
{03}=R

2
− ×R++

and this set is evenly convex, K< =R
2
− ×R++.

COROLLARY 5.4. Let F ={x ∈R
n |ft(x) � 0, ∀t ∈W } �=∅, with ft : Rn →

R∪{+∞} proper convex lsc for all t ∈W . Let K<
t be the strict dual cone of

Ft :={x ∈R
n |ft(x) � 0}, t ∈W . Then

K< = eco

[
⋃

t∈W

K<
t

]

,

where

K<
t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

int(R+ epi f ∗
t ), if Ft is bounded,

(

coneco

{(
at

bt

)

,

(
0n

1

)})∖
R+

{(
at

bt

)}

, if ft(x)=a′
t x −bt .

Proof. It is a straightforward consequence of Propositions 5.3 (if Ft is
bounded) and 5.5, and the evenly convex property of K<

t (if ft is an affine
function). �

EXAMPLE 5.2 (revisited). F = {x ∈ R
2 | (cos t)x2 + (sin t)xt � 1, ∀t ∈

[0,2π ]}.
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By Corollary 5.4, recalling that ecoX =X if X is open and convex,

K<= eco

⎧
⎨

⎩

⋃

t∈[0,2π ]

⎡

⎣

⎛

⎝coneco

⎧
⎨

⎩

⎛

⎝
cos t

sin t

1

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭

⎞

⎠
∖

R+

⎧
⎨

⎩

⎛

⎝
cos t

sin t

1

⎞

⎠

⎫
⎬

⎭

⎤

⎦

⎫
⎬

⎭

= eco{x ∈R
3 |x2

1 +x2
2 <1, x3 >0}

={x ∈R
3 |x2

1 +x2
2 <1, x3 >0}.

If F ={x ∈R
n |ft(x)<0, ∀t ∈S; ft(x) � 0, ∀t ∈W } �=∅, its strict dual cone

is eco(M< ∪N<), where M< and N< are the strict dual cones of

{x ∈R
n |ft(x)<0, ∀t ∈S}

and

{x ∈R
n |ft(x) � 0, ∀t ∈W },

respectively. M< and N< can be calculated by means of Corollaries 5.3 and 5.4.

6. General Existence Theorems and Applications to Set Containments

This section provides three existence theorems for convex systems of the form

ξ ={ft(x)<0, t ∈S; ft(x) � 0, t ∈W },

with S �= ∅ (otherwise Proposition 3.1 applies). All the proposed consis-
tency tests are expressed (or can be expressed by means of (2.1)) in terms
of the information on {ft , t ∈ S ∪W }, and the proofs will be derived from
the existence theorem for linear systems (Proposition 2.1). The first result
replaces linearity by sublinearity in Proposition 2.1.

PROPOSITION 6.1. Let ft(x) = gt(x) − bt , with gt : Rn → R sublinear and
bt ∈R for all t ∈S ∪W . Then ξ is consistent if and only if

0n+1 /∈ eco

[(
⋃

t∈S

∂gt (0n)×{bt}
)

+R+

(
⋃

t∈W

∂gt(0n)×{bt}
)

;
(

0n

1

)]

. (6.1)

Proof. Since gt is sublinear and continuous, it can be expressed as

gt(x)= max
v∈∂gt (0n)

v′x for all x ∈R
n. (6.2)
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Consequently, ξ has the same solution set as the linear system

η :=
{

a′
tvx <bt , atv ∈ ∂gt (0n), t ∈S

a′
tvx � bt , atv ∈ ∂gt (0n), t ∈W

}

.

Applying Proposition 2.1, we conclude that η is consistent if and only if
condition (6.1) holds. �

It is easy to extend Proposition 6.1 to the case that each function ft can
be expressed as ft(x) = gt(x − xt ) − bt , with gt : R

n → R sublinear, xt ∈ R
n

and bt ∈ R (replace x with x − xt and 0n with xt in η). Typical examples
of such functions are ft(x) = √

(x −xt )′At(x −xt ) − bt where At is a posi-
tive definite symmetric matrix xt ∈R

n and bt >0, so that the solution set of
ξ is the intersection of (open and closed) ellipsoids.

Next, we relax in another way the assumption on {ft , t ∈ W } in
Proposition 6.1.

PROPOSITION 6.2. Let ft : Rn →R∪{+∞} proper convex lsc for all t ∈W

and let ft(x)= gt(x)− bt , with gt : Rn → R sublinear for all t ∈ S. Then ξ is
consistent if and only if

0n+1 /∈ eco

[(
⋃

t∈S

∂gt (0n)×{bt}
)

+R+

{
⋃

t∈W

epi f ∗
t

}

;
(

0n

1

)]

. (6.3)

Proof. Given t ∈S, by (6.2), the solution set of {ft(x)<0} is the same as
the solution set of

{a′
tvx <bt , atv ∈ ∂gt (0n)}.

On the other hand, given t ∈W , we can write

ft(x)=f ∗∗
t (x)= sup

x∗∈dom f ∗
t

[x∗(x)−f ∗
t (x∗)] for all x ∈R

n.

Thus ft(x) � 0 if and only if x∗(x)−f ∗
t (x∗) � 0 for all x∗ ∈dom f ∗

t if and
only if

x∗(x) � f ∗
t (x∗)+γ for all (x∗, γ )∈dom f ∗

t ×R+.

Then ξ is consistent if and only η is consistent, where

η :=
{

a′
tvx <bt , atv ∈ ∂gt (0n), t ∈S

x∗(x) � f ∗
t (x∗)+γ, (x∗, γ )∈dom f ∗

t ×R+, t ∈W

}

.
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Applying again Proposition 2.1, we conclude that η is consistent if and
only if (6.3) holds. �

The sublinearity assumption in Proposition 6.2 can be relaxed by requir-
ing that each function ft , t ∈S, is the maximum of a family of affine func-
tions (compare with (6.2)).

PROPOSITION 6.3. Let ft : Rn → R ∪ {+∞} proper convex lsc for all t ∈ W .
We also assume that, for each t ∈S, there exists a compact set Ct ⊂R

n+1 such that
ft(x)=max(a,b)∈Ct

(ax −b) for all x ∈R
n. Then ξ is consistent if and only if

0n+1 /∈ eco

[(
⋃

t∈S

Ct

)

+R+

{
⋃

t∈W

epi f ∗
t

}

;
(

0n

1

)]

. (6.4)

Proof. Given t ∈S, ft(x)<0 if and only if

(
a

b

)′(
x

−1

)
<0 for all

(
a

b

)
∈Ct .

Reasoning as in Proposition 6.2, ξ is consistent if and only if η is consis-
tent, with

η :=
⎧
⎨

⎩
a′x <b,

(
a

b

)
∈Ct, t ∈S

x∗(x) � f ∗
t (x∗)+γ, (x∗, γ )∈dom f ∗

t ×R+, t ∈W

⎫
⎬

⎭
,

and η turns out to be consistent if and only if (6.4) holds. �

In order to summarize the consequences of the previous existence the-
orems for the containment problem, let us denote by A the set of affine
functions on R

n, by S the family of differences between sublinear (possibly
composed with translations) and constant functions, by M the family of
functions which can be expressed as max(a,b)∈C(ax − b) for a certain com-
pact set C ⊂R

n+1, and by C the class of proper convex lsc functions.
Given F ={x ∈R

n |ft(x)< 0, ∀t ∈S; ft(x) � 0, ∀t ∈W }, F �=∅ is char-
acterized in the following cases:

• S =∅ and {ft , t ∈W }⊂C.
• S �=∅ and {ft , t ∈S ∪W } is contained in either A or S.
• S �=∅, {ft , t ∈W }⊂C, and {ft , t ∈S} is contained in either S or M.

Concerning the containment of F �= ∅ in the reverse-convex set R
n\Gj,

with Gj ={x ∈R
n |hj (x)<0}, it is characterized in the following cases:

• {ft , t ∈S ∪W ;hj } is contained in either A or S.
• {ft , t ∈W }⊂C and {ft , t ∈S;hj } is contained in either S or M.
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Obviously, the containment of F �=∅ in the reverse-convex set R
n\⋃j∈J Gj ,

with Gj ={x ∈R
n |hj (x)<0}, j ∈J , is characterized if F ⊂R

n\Gj is character-
ized for all j ∈J.

Finally, observe that the proofs of Propositions 6.1–6.3 are based upon
the explicit construction of a linear representation of F , that is, η. From
this representation it is possible to obtain the strict dual cone of F �=∅ just
applying Corollaries 5.3 and 5.4.

EXAMPLE 6.1. Let F ={x ∈R
n |gt(x)<bt , ∀t ∈S; gt(x) � bt ,∀t ∈W } �=∅,

with gt , t ∈S ∪W as in Proposition 6.1. Then the strict dual cone of F is
K< = eco(M< ∪N<), where

M<= eco

[

coneco

{
⋃

t∈S

∂gt (0n)×{bt};
(

0n

1

)}∖
{0n+1}

]

and

N<= eco
[ ⋃

︷ ︸︸ ︷(
a

b

)
∈
⋃

t∈W

∂gt (0n)×{bt }

{
coneco

{(
a

b

)
,

(
0n

1

)}∖
R+

{(
a

b

)}}]
.

Similar expressions can be given for the strict dual cone of the solutions
set of ξ , under the assumptions of Propositions 6.2 and 6.3, provided that
ξ is consistent.
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